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Abstract

The exponentially growing healthcare costs 
coupled with the increasing interest of patients in 
receiving care in the comfort of their own homes 
have prompted a serious need to revolutionize 
healthcare systems. This has prompted active 
research in the development of solutions that 
enable healthcare providers to remotely monitor 
and evaluate the health of patients in the comfort 
of their residences. However, existing works lack 
flexibility, scalability, and energy efficiency. This 
article presents a pervasive patient health monitor-
ing (PPHM) system infrastructure. PPHM is based 
on integrated cloud computing and Internet of 
Things technologies. In order to demonstrate the 
suitability of the proposed PPHM infrastructure, 
a case study for real-time monitoring of a patient 
suffering from congestive heart failure using ECG 
is presented. Experimental evaluation of the pro-
posed PPHM infrastructure shows that PPHM is 
a flexible, scalable, and energy-efficient remote 
patient health monitoring system.

Introduction
Healthcare costs in many countries are increasing 
at an unsustainable rate. In the United States, for 
instance, healthcare spending is expected to be 
$4.8 trillion in 2021, which is close to 20 percent 
of gross domestic product [1]. Factors accounting 
for the increasing healthcare spending include 
chronic diseases, waste, and inefficiencies such 
as over-treatment, and redundant, inappropriate, 
or unnecessary tests and procedures. In addition, 
advances in medicine over the last decades have 
significantly increased the average life expectan-
cy while simultaneously decreasing the rate of 
mortality substantially. As a result, the number 
of elderly people has been rising constantly, 
which is placing a strain on the healthcare ser-
vices. The need to bring healthcare costs into a 
sustainable range is an urgent issue that needs to 
be addressed [2].

One possible way to address the challenges 
facing the healthcare industry is by caring for 
patients in their environments such as their resi-
dences. A lot of patient categories such as those 
with chronic disease who need only therapeu-
tic supervision, elderly patients, and patients with 
congenital heart defects do not need to use a hos-

pital bed as they can be cared for in their homes 
[2–4]. The challenge, however, is how healthcare 
professionals can accurately, reliably, and securely 
monitor the health status of their patients without 
physically visiting them at their residences. The 
system must be able to facilitate patient mobility, 
while at the same time improve their safety and 
increase their autonomy.

This study addresses this challenge by augment-
ing existing healthcare systems with inexpensive 
but flexible and scalable pervasive technologies 
that enable long-term remote patient health sta-
tus monitoring. Recent advances in the Internet 
of Things (IoT) [12] and cloud computing (CC) 
[13] have made it practically possible to transform 
the healthcare sector. As the healthcare system 
increasingly values efficiency and outcomes, the 
adoption and diffusion of IoT and cloud can play 
a significant role in arresting the spiraling health-
care costs without impacting the quality of care 
provided to patients [4]. Although the integra-
tion of IoT and CC would be a great innovation 
in contemporary medical applications [7], remote 
patient health status monitoring systems that inte-
grate IoT and CC have received less attention [4]. 
Therefore, despite all of the possibilities that IoT 
and CC technologies offer, there are some signif-
icant obstacles that need to be overcome before 
their full potential can be realized [9].

In this article, we propose a remote pervasive 
patient health monitoring (PPHM) framework. 
The proposed framework leverages the combined 
strong synergy of IoT, CC, and wireless technolo-
gies for efficient and high-quality remote patient 
health status monitoring. The article makes the 
following contributions:
•	 A flexible, energy-efficient, and scalable 

remote patient health status monitoring 
framework

•	 A health data clustering and classification 
mechanism to enable good patient care

•	 A case study where the capabilities of the 
PPHM framework are exploited for patients 
with heart disease

•	 Performance analysis of the PPHM frame-
work to show its effectiveness
The rest of the article is organized as follows. 

First, we provide related work. We then present 
the proposed cloud and IoT integrated remote 
health status monitoring framework. Next, we 
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present an ECG process analysis using the pro-
posed monitoring system. We report performance 
analysis of the PPHM framework. Fifnally, the con-
clusion is outlined.

Related Work
The question addressed in this article is how to 
remotely monitor and evaluate the health of 
patients in the comfort of their own homes. Inte-
grating IoT and CC for patient health and activ-
ity monitoring has been an active research area 
lately. A complex framework that encompasses 
several heath ecosystems, where data from the 
sensors is watermarked for security purposes and 
transmitted to the cloud for feature extraction 
and classification is discussed in [2]. One-class 
support vector machine classification is used in 
the framework to classify an ECG as abnormal 
or not. A privacy-preserving data collection and 
secure transmission framework is presented in [6]. 
BodyCloud [7] is a three-tier integrated software 
as a service (SaaS)-based cloud and body sen-
sor networks (BSNs) architecture that enables the 
development and deployment of cloud-assisted 
BSN applications. A mobile healthcare system for 
wheelchairs that exploits BoudlyCloud compo-
nents is discussed in [10]. The framework in [5] 
integrates TCP/IP and Zigbee for interoperability 
in the coordinator devices. The framework dis-
cussed in [8] is designed to perform diagnosis of 
chronic illnesses such as diabetes. Patient data 
are collected through body sensors and stored 
in the cloud for subsequent analysis and classifi-
cation. This client-server model framework does 
not consider energy consumption. In the archi-
tecture proposed in [9], patient data is transferred 
through the home gateway to the cloud, where it 
is processed and then made available to health-
care professionals or patients. How this is done is 
not really explained.

Our work is motivated by these previous 
works and complements them in many ways. 
As in [7], our PPHM framework is three-tiered 
with push-pull communication between the three 
tiers. Thus, in our model, an authorized health-
care professional can request and obtain the real-
time data collected by a particular sensor in an 
IoT subsystem. This capability is generally absent 
from these works. As in [2], our framework inte-
grates data analytics based on our prior work 

[11, 13]. Unlike [2], we use data clustering and 
classification mechanisms to improve classifica-
tion accuracy. We also consider optimization of 
the communication and energy consumption at 
all levels of the system. Unlike the previous stud-
ies, we assume that the cloud is used by many 
competing applications, and proper service provi-
sioning is used to allocate cloud resources to the 
competing applications.

Remote Health Status 
Monitoring Framework

This section describes the general three-tier archi-
tecture of the proposed PPHM framework shown 
in Fig. 1. In the following subsections, we explain 
the major components of the framework.

Observation Station

The observation station consists of an IoT subsys-
tem that is tasked with remote physiological and 
activity monitoring of patients. The core moni-
toring infrastructure of the IoT subsystem is the 
wireless BSNs. This subsystem contains a set of 
n BSNs, B = {b1, …, bn}. Each bi  B represents 
a patient and is defined as bi = S, P, where P 
is a personal server and S = {s1, …, sm} is a set of 
m energy-constrained lightweight wireless sensor 
nodes. Each sensor si  S has enough capability 
to collect patient data, aggregate it, perform basic 
processing, and transmit it to a personal server for 
further processing. These sensors can be implant-
able, worn or attached, to everyday objects such 
as clothes unobtrusively to gather specific physio-
logical parameters such as a patient’s blood sugar 
levels, blood glucose, capnography (i.e., CO2 
level and breathing), and pulse oximetry and ECG 
continuously or on demand. Continuous moni-
toring is performed when intensive monitoring is 
needed for patients. In this case, sensors continu-
ously collect vital data and send it to the personal 
server. The on-demand monitoring occurs when 
a request from any authorized person within the 
system, such as a patient, doctor, or nurse, is gen-
erated.

The personal server provides a link between 
the IoT subsystem and the cloud infrastructure. 
The personal server is a dedicated per-patient 
machine (e.g., a tablet or smartphone) with built-
in features such as a GPS module, Bluetooth radio 
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Figure 1. Internet of Things and cloud-based architecture for remote healthcare monitoring.
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module, and SQLite database. We assume that 
the personal server can compatibly interact with 
various local networks such as WiFi and LTE [4]. 
Each sensor within a given BSN is wirelessly con-
nected via a single hop to a dedicated personal 
server. We assume that the default communica-
tion between the sensor nodes to a personal serv-
er is via Bluetooth. The personal server receives 
a stream of sensor data from the sensors. It per-
forms basic data analysis and aggregation, gen-
erating alarm signals, making the data available 
to the entities subscribed to be notified (e.g., 
patient), or pushing the data (along with the loca-
tion of the patient) out to the cloud for further 
analysis and sharing by healthcare professionals. 
In order to manage bandwidth and energy con-
sumption, a fuzzy-based data fusion technique 
that distinguishes and aggregates only the true 
values of the sensed data [14] is used. This meth-
od decreases the processing and transmission of 
the sensed data as well as removes redundant 
data, thus minimizing energy depletion while pro-
longing the network lifetime. In addition to trans-
ferring data from the sensors to the cloud, the 
personal server can possibly receive a request for 
specific data from cloud applications or an end 
user. 

Data Center Subsystem

The cloud relieves the IoT subsystem by perform-
ing heavy functions that require storing, process-
ing, and analyzing the collected patient health 
data from the IoT subsystem. Cloud storage offers 
benefits of scalability and accessibility on demand 
at any time from any place. The healthcare provid-
er data center hosts the cloud subsystem, which 
delivers storage resources and provides compu-
tational capability for analyzing and processing of 
the collected data. The cloud also hosts the mid-
dleware system, virtual sensors, and application 
services that allow medical staff to analyze and 
visualize patients’ data as well as to identify and 
raise alerts when events requiring urgent interven-
tion are observed. The major components of the 
cloud subsystem are described below.

Patient Data Storage: The cloud storage 
resources are used for long-term storage of 
patients’ medical information (e-Health) and 
the data from the IoT subsystem (sensory data). 
E-Health contains the conventional clinical data 
(e.g., clinic observation and lab test results) while 
the sensory data contains longitudinal patient data 
provided by BSNs. Based on the access control 
configuration, healthcare practitioners or emer-
gency centers can access the stored information 
without visiting the patient. The physicians, having 
access to the sensory data along with the e-Health 
data supported by decision support systems, can 
improve the quality of patient health in remote 
locations by making better and quicker progno-
ses, intervention, and treatment recommenda-
tions.

Health Data Sharing Policy (HDSP): One of 
the aims of the healthcare service providers for 
collecting clinical data from patients is to share 
them with authorized healthcare professionals. 
As data security and privacy are important issues 
in healthcare systems [2], we use an access con-
trol mechanism (e.g., signature or certificate) that 
ensures only legitimate end users can access the 

data in the cloud. We also use policy to con-
trol the sharing of data. HDSP governs how the 
patient data is shared among the authorized enti-
ties and used to verify the identity of the user 
with access authority. For instance, the policy can 
define that access to the sensor reading in the 
sensor data storage and the corresponding anal-
ysis results can only be accessed by the doctors 
in the neurology department. HDSP also ensures 
that patient unique identities and associated 
profiles should be anonymized before the data 
is shared with other entities such as a research 
center. In the proposed framework, the data 
monitoring unit is responsible for setting up the 
HDSP taking into account regulatory compliance 
requirements and the need for sharing to provide 
the best possible care for the patient.

Cloud Middleware: The middleware consists 
of a virtual machine (VM) manager and a ser-
vice scheduler, among others. The VM manager 
is responsible for managing the virtual sensors, 
which are virtualized counterparts of physical sen-
sors in BSNs, collecting sensor data from person-
al servers, and storing those data in the “sensor 
data” store. As compared to the standard cloud 
workloads such as non-real-time data for scientific 
computation and storage, the workload from the 
IoT subsystem is characterized by high inter-arrival 
rates and highly variant runtimes but with low par-
allelism. Thus, it becomes important to have cloud 
resource management and scheduling that can 
be adapted to handle such different workloads. 
Thus, service scheduling is necessary to properly 
schedule many real-time and non-real-time service 
requests to improve resource usage efficiency. 
Also, the scheduler performs dynamic load bal-
ancing and adaptive resource management in an 
energy-efficient manner.

Medical Application Services: The cloud hosts 
various services that process clinical data collect-
ed from the IoT subsystem for clinical observation 
and intervention, and to dispatch ambulances or 
notify family members of patients. The analytics 
engine (AE) extracts features from the collected 
data and classifies the data to assist healthcare 
professionals to facilitate good patient care. For 
the healthcare professionals to use the results 
from the AE to reach accurate and appropriate 
responses and actions, the output from AE will 
be used by the visualization engine to make the 
data accessible to the healthcare professionals in 
a readily digestible format. The alert system raises 
alert signals when events requiring urgent inter-
ventions are observed. The alarm function gener-
ates alerts if the value of the sensed physiological 
parameters exceeds a predetermined threshold 
value. For example, an alarm signal is generated 
when abnormalities such as arrhythmia or hypo-
tension are detected. This capability enables 
patient health problems to be detected without 
visiting a doctor, notifying healthcare providers if 
a check-up is needed, and generating emergency 
alerts to ambulances.

Observation Station

The observation station is where data-driven clin-
ical observation and intervention take place. At 
this tier, entities such as healthcare profession-
als (e.g., doctors), emergency response services, 
medical research centers, and patients have 

The cloud also hosts 

the middleware system, 

virtual sensors, and 

application services that 

allow medical staff to 

analyze and visualize 

patients’ data as well 

as to identify and raise 

alerts when events 

requiring urgent inter-

vention are observed.



IEEE Communications Magazine • January 2017 51

presence. The monitoring center involves the 
participation of many healthcare actors, includ-
ing doctors, patients, and nursing staff, in clinical 
observation, patient diagnosis, and intervention 
processes. Thus, all access requests for patient 
data are managed by the monitoring center. Any 
authorized user wanting to access the sensor data 
can do so by issuing a data request to the cloud 
through the monitoring center. If the requested 
data is available in the sensor data storage, the 
data will be returned to the user. Therefore, the 
healthcare professionals must have appropriate 
authentication and authorization credentials to 
access the data.

The framework also allows authorized users 
or applications to pull any missing or extra data 
on an on-demand basis from the personal server. 
The personal server will retrieve data from either 
its memory or a sensor node and send it to the 
end user or the application. Entities at this level 
can subscribe to the data service to be informed 
automatically when specific data or patterns are 
observed. For example, patients can subscribe to 
receive data for the purpose of self-health mon-
itoring. This can happen, for example, after data 
analytics and health indicators, when the system 
provides medical advice to the user. In this case, 
the data is automatically published to the sub-
scribers immediately when it becomes available. 
The patient can use data such as blood sugar lev-
els to take appropriate actions in case of anomaly 
detection. Such knowledge-based decisions may 
lead to reduction in the number of visits to doc-
tors, tests, and hospitalizations. It can also inform 
caregivers and emergency centers through SMS. 
The advantage of this service model is less net-
work traffic and power consumption.

Case Study: Congestive Heart Failure
In this case study, we consider a patient suffering 
from congestive heart failure (CHF) requiring care 
on a regular basis at her home. CHF develops 
when the heart’s blood pumping ability weakens 
due to factors such as coronary heart disease, 
hypertension, and arrhythmia [11]. The cardiac 
activity of the patient is monitored via ECG, which 
is a non-invasive diagnostic method for monitor-
ing and detecting a range of heart diseases.

Figure 2 illustrates the proposed framework for 
remote patient monitoring. In the example, a phy-
sician initiates the monitoring and the execution 
of the data analysis processes. The physician can 
define the start and end times of the monitoring 
period. The monitoring center goes through the 
setup process, which includes confirmation that 
the requesting agent is an authorized individual, 
the setup of the personal server that is capable of 
collecting, aggregating, and sending patient data 
through the Internet based on patient location 
(e.g., home, hospital, or outdoors), the registra-
tion of the personal server, the initiating doctor, 
thresholds to be checked for alert initiation, and 
the exchange of encryption keys between the 
cloud and the personal server. In addition, the 
type of monitoring service (continuous or on 
request) needs to be selected by the physician. 

After the setup step is completed, the IoT 
subsystem starts gathering key physiological 
parameters and forwarding the data to the per-
sonal server, where the data is aggregated and 

relayed to the sensor data storage linked to the 
patient e-Health records in the cloud system. In 
conventional settings, the physicians examine the 
ECG recordings visually for important features. As 
manual inspection of ECG heartbeats can lead 
to inaccurate decisions [11], automatic classifi-
cation of the ECG signals is important for clini-
cal diagnosis of various heart diseases. However, 
the ECG dataset is highly dimensional, large, and 
noisy in nature. To address this problem, we use 
an approach that combines feature reduction, 
consensus clustering, and classification algorithms 
for ECG data profiling. Figure 3 shows the compo-
nents of the multistage system model.

The ECG dataset is processed by the dimen-
sionality reduction algorithm, which is the rank 
correlation coefficient (RCC) algorithm to obtain 
fewer features that effectively capture the behav-
ior of the ECG signals. The output from RCC is 
fed into a set of unsupervised clustering algo-
rithms (i.e., Cobweb, Expectation Maximization, 
Farthest First, and Simple K-Means) algorithms. 
This step generates a set of n independent clus-
ters C = {C1, C2, Cn}. We used the hybrid bipartite 
graph formulation (HBGF) consensus function 
to combine the C clusters and produce a final 
consensus cluster (Cfinal). HBGF is based on a 
bipartite graph, and the Cfinal is determined by the 
way HBGF partitions all elements of the data set. 
Finally, we used sequential minimal optimization 
(SMO) with a polynomial kernel supervised classi-
fication algorithm to classify the dataset.

Performance Evaluation
In this section, we evaluate the proposed frame-
work using an emulator-based approach [7, 15] 
on real ECG signals from the BIDMC Conges-
tive Heart Failure Database (CHFD). The CHFD 

Figure 2. The PPHM framework monitoring process.
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dataset contains ECG recordings from 15 sub-
jects with severe congestive heart failure. The indi-
vidual recordings are each approximately 20 h 
in duration. They contain two main ECG signals, 
each sampled at 250 samples/s with 12-bit reso-
lution over a range of ±10 mV. As in [15], we use 
the ECG Sensor Emulator, implemented in Mat-
lab, to generate an ECG data stream by convert-
ing each ECG sample from the CHFD dataset to a 
series of pairs of 16-bit frames and transfer them 
to the personal server over Bluetooth. 

ECG Classification

We studied the effectiveness of the pro-
posed classification scheme using the weight-
ed average F-measure. We used 10-fold cross 
validation and compared the SMO-based clas-
sification algorithms with the Bayes Network 
Learning (BayesNet) and Classical Naive Bayes 
(NaiveBayes) algorithms.

Figure 4 shows the performance (weighted 
average F-measure) of the three classification 
algorithms as a function of the number of clusters 
after their training on the initial consensus cluster-
ing data. In [2], the accuracy obtained was 87.7 
percent with MIT-BIH database and 90.4 percent 
with a private database. In our case, we achieved 
89.7 percent with 20 clusters and 98.9 percent 
with 2 clusters. The results establish that our classi-
fication algorithms achieve high accuracy with the 
SMO-based classifier achieving the best results. 
The result also demonstrates that the SMO-based 
classifier scales up much better as the number of 
clusters increases. These algorithms can be used 
in practical implementations for profiling of highly 
dimensional, noisy, and large ECG datasets.

Scalability Analysis

To study the scalability of the system, we emulat-
ed a set of clients that concurrently transmit sen-
sor data stream as in [7]. We model the request 
inter-arrival time as a Poisson process, while the 
service demand is randomly selected between 1 
to 5 ms. We repeated the experiment 1000 times 
and took the average result. Figure 5 shows the 
average response time as the number of simulta-
neous requests vary. As the number of requests 
increase, we can see that the response time 
increases linearly.

Energy Consumption

In order to study the energy consumption effective-
ness of the proposed PPHM framework, we model 
energy consumption for sensing, computation, and 
transmission of the messages for a period of time 
and check the level of the energy usage. We send 
a b-bit message over a distance d as ((Eelec + b) + 
(amp + b + d2)) and receive this message as (Eelec 
+ b). The Eelec = 50 nJ/bit is the energy dissipat-
ed to run the transmitter or receiver circuitry, and 
amp = 0.1 nJ/bit is the transmit amplifier. The ini-
tial energies of each sensor node is fixed at 1.0 J. 

Figure 6 shows the cumulative power consump-
tion as a function of the elapsed time. As the exist-
ing framework does not deploy any optimizations, 
it dissipates energy faster than our framework. In 
contrast, we deploy optimization techniques such 
as the fuzzy-based data fusion method to manage 
bandwidth and energy consumption. This meth-
od is able to decrease the transmission and the 
processing of the sensed data as well as remove 
redundant data, thus minimizing energy consump-
tion while increasing the network lifetime. 

Conclusions
In the conventional hospital-centric healthcare sys-
tem, patients are often tethered to several moni-
tors. In this article, we develop an inexpensive but 
flexible and scalable remote health status monitor-
ing system that integrates the capabilities of the 
IoT and cloud technologies for remote monitoring 

Figure 4. Classification accuracy.
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of a patient’s health status. Through experimen-
tal analysis, we have shown that the proposed 
framework is scalable and energy-efficient with 
very high classification accuracy. We believe that 
the proposed work can address the healthcare 
spending challenges by substantially reducing inef-
ficiency and waste as well as enabling patients 
to stay in their own homes and get the same or 
better care. We are currently implementing the 
proposed algorithm and testing it in a real-life 
environment. We are also extending the proposed 
work to include the privacy and security aspects.
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We believe that the pro-

posed work can address 

the healthcare spending 

challenges by substan-

tially reducing inefficien-

cy and waste as well as 

enabling patients to stay 

in their own homes and 

get the same or better 

care. We are currently 

implementing the pro-

posed algorithm and 

testing it in a real-life 

environment.


